Drug Delivery in Central Nervous System Disorders
Technologies, Companies and Markets

By
Prof. K. K. Jain
MD, FRACS, FFPM
Jain PharmaBiotech
Basel, Switzerland

May 2019

A Jain PharmaBiotech Report
AUTHOR'S BIOGRAPHY

Professor K. K. Jain is a neurologist/neurosurgeon by training with specialist’s qualifications. His personal experience includes some of the technologies mentioned in this report. He received graduate training in both Europe and USA and has held academic positions in several countries. He is a Fellow of the Faculty of Pharmaceutical Medicine of the Royal College of Physicians of UK and has been working in the biotechnology/biopharmaceuticals industry for several years. Currently he is a consultant at Jain PharmaBiotech. Prof. Jain’s 482 publications include 31 books (6 as editor + 25 as author) and 50 special reports, which have covered important areas in biotechnology, neurology, and pharmaceuticals.

ABOUT THIS REPORT

The original report on Drug Delivery in CNS Diseases by the author was published by Decision Resources Inc in 2000 as an enlargement of the chapter on this topic in his report on Drug Delivery Technologies (1998), which was also published by Decision Resources. The second edition was rewritten and published at Jain PharmaBiotech in 2004 and is being constantly rewritten since then.

May 2019 (constantly updated since first edition published in 2000 by Decision Resources Inc)
Copyright © 2019 by
Jain PharmaBiotech
Bläuring 7
CH-4057 Basel
Switzerland
Tel & Fax: +4161-6924461
Email: info@pharmabiotech.ch
Web site: http://pharmabiotech.ch/

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise without the prior written permission of the Publisher. This report may not be lent, resold or otherwise traded in any manner without the consent of the Publisher. While all reasonable steps have been taken to ensure the accuracy of the information presented, the Publisher cannot accept responsibility for inadvertent errors or omissions.
Table of Contents

0. Executive Summary ... 16

1. Basics of Drug Delivery to the Central Nervous System 18

Introduction ... 18

Historical evolution of drug delivery for CNS disorders 18

Neuroanatomical and neurophysiological basis of drug delivery 19

The cerebrospinal fluid ... 19

The lymphatic drainage system of the brain 20

The extracellular space in the brain ... 20

Neurotransmitters .. 21

Extracellular vesicles as drug delivery vehicles 23

Neuropharmacology relevant to drug delivery 23

Introduction to neuropharmacology ... 23

Pharmacokinetics .. 23

Absorption and distribution of drugs .. 23

Drug metabolism and elimination .. 24

Pharmacodynamics .. 24

Receptors .. 24

Sites of drug action in the CNS ... 24

Receptors coupled to guanine nucleotide binding proteins 25

Acetylcholine receptor channels .. 25

Dopamine receptors .. 25

GABA receptor channels ... 26

Glutamate receptor channels ... 26

Non-competitive NMDA antagonists .. 26

Serotonin receptors .. 27

G-protein coupled receptors ... 27

In vivo study of drug action in the CNS in human patients 27

Electroencephalography ... 27

Brain imaging .. 28

Chronopharmacology as applied to the CNS 28

Role of drug delivery in personalized therapy of CNS disorders 29

2. Blood Brain Barrier ... 30

Introduction ... 30

Features of the blood-brain barrier relevant to CNS drug delivery 30

The neurovascular unit ... 30

Functions of the BBB ... 31

BBB as an anatomical as well as physiological barrier 31

BBB as a biochemical barrier ... 32

Glucose transporters at the BBB .. 32

Role of shear stress on development of BBB 33

Genomics of BBB ... 33

Transcriptomics of BBB ... 34

Other neural barriers .. 34

Blood-cerebrospinal fluid barrier .. 34

Blood nerve barrier ... 35

Blood-retinal barrier ... 35

Blood-labyrinth barrier ... 35

Passage of substances across the blood-brain barrier 35

Adenosine carrier ... 36

Amino acid transporters ... 37

Efflux transport systems ... 38

Glucose transporter ... 39

Ionic transporter ... 39

BBB-specific enzymes ... 40

Receptor-mediated transcytosis .. 40

Lyosphosphatidic acid-mediated increase in BBB permeability 41

Folate transport system ... 41

Transferrin receptor ... 41

Molecular biology of the BBB ... 41

Transport of peptides and proteins across the BBB 42

Passage of leptin across the BBB .. 42

Passage of cytokines across the BBB .. 42

Passage of hormones across the BBB ... 43

Passage of enzymes across the BBB .. 43
Passage of omega-3 fatty acids across the BBB ... 44
Drugs that cross the BBB by binding to plasma proteins .. 44
Current concepts of the permeability of the BBB ... 44
BBB permeability in relation to disease .. 44
BBB permeability in relation to drug delivery .. 45
Factors that increase the permeability of the BBB ... 46
BBB disruption as an adverse effect of pharmaceuticals .. 46
BBB disruption as adverse effect of vaccines for CNS disorders 47
CNS disorders and BBB ... 47
Autoimmune disorders ... 48
Brain tumors .. 48
Primary brain tumors ... 48
Cerebral metastases .. 48
Central nervous system injuries .. 48
Cerebrovascular disease ... 49
Cerebral ischemia .. 49
Intracerebral hemorrhage .. 49
Epilepsy .. 50
Infections .. 50
Inflammation ... 51
Mitochondrial encephalopathies .. 51
Multiple sclerosis .. 52
Neurodegenerative disorders ... 53
BBB in Alzheimer disease .. 53
BBB in Parkinson disease .. 54
BBB in amyotrophic lateral sclerosis ... 54
West Nile virus infection ... 55
Testing permeability of the BBB ... 55
In vitro models of BBB .. 55
In vivo study of BBB ... 56
Brain imaging .. 57
In silico prediction of BBB .. 57
Relevance of the BBB penetration to pharmacological action 58
BBB penetration and CNS drug screening .. 59
BBB models for testing drug delivery ... 59
CERENSE™ .. 59
In vivo brain distribution of P-glycoprotein ... 60
Transferrin monomer as a marker of blood-CSF barrier disruption 60
Evaluation of BBB permeability by brain imaging ... 60
Biomarkers of disruption of blood-brain barrier ... 60
Future directions for research on the BBB ... 61
Use of neural stem cells to construct the blood brain barrier .. 62
Strategies to cross the BBB .. 62

3. Methods of Drug Delivery to the CNS ... 64
Introduction ... 64
Routes of drug delivery to the brain .. 65
Drug deliveries to the brain via the nasal route ... 65
Devices for nasal administration of drugs for CNS .. 65
Nasal mucosal patch to facilitate drug delivery across the BBB 66
Passage of viruses to the brain via the nasal route ... 68
Potential and limitations of nasal drug delivery to the brain .. 69
Drugs that can be delivered to the brain via the nasal route .. 68
Erythropoietin ... 69
Esketamine .. 69
Hypocretin .. 69
IFN beta-1b ... 69
Lysosomal enzymes ... 70
Midazolam ... 70
Neurotrophic factors .. 70
Thyrotropin-releasing hormone .. 71
Neuroprotective drugs for stroke .. 71
Transdermal drug delivery for neurological disorders ... 72
Drug delivery to the brain via inner ear .. 72
Drug delivery for disorders of the spinal cord .. 72
Intrathecal drug delivery ... 72
Anatomical & physiological aspects of intrathecal drug delivery 73
Advantages of intrathecal drug delivery ... 73
Drugs that can be delivered by intrathecal route ... 74
Pharmacokinetics of intrathecal drug delivery .. 75
Retrograde delivery to the brain via the epidural venous system 76
Devices for drug delivery to the CNS ... 77
Catheters for drug delivery to the CNS ... 77
Reservoirs and pumps for drug delivery to the CNS ... 77
Invasive neurosurgical approaches .. 78
Intraarterial drug delivery to the brain .. 78
Direct injection into the CNS substance or CNS lesions 79
Targeted delivery of biologics to the spinal cord by miRNA injection 79
Intraventricular injection of drugs ... 79

Strategies for drug delivery to the CNS across the BBB 80

Increasing the permeability (opening) of the BBB ... 81
Osmotic opening of the BBB .. 81
Focal disruption of BBB by ultrasound ... 81
Chemical opening of the BBB .. 81
Cerebral vasodilatation to open the BBB ... 82
Modulation of vascular permeability by laser irradiation 82
Neurostimulation for opening BBB ... 82
Use of nitric oxide donors to open the BBB .. 83
Manipulation of the sphingosine 1-phosphate receptor system 83

Pharmacological strategies to facilitate transport across the BBB 84
2B-Trans™ technology ... 84
ABC afflux transporters and penetration of the BBB 85
Adenosine agonist-mediated drug delivery across the BBB 85
Carrier-mediated drug delivery across the BBB ... 86
Fusion of receptor-binding peptide from apoE with therapeutic protein 86
G-Technology® .. 87
Glycosylation Independent Lyosomal Targeting ... 87
Inhibition of P-glycoprotein to enhance drug delivery across the BBB 87
LipoBridge™ technology ... 88
Modification of the drug to enhance its lipid solubility 88
Monoclonal antibody fusion proteins .. 89
Neuroimmunophilins .. 89
Peptide-mediated transport across the BBB .. 90
Prodrug bioconversion strategies and their CNS selectivity 91
Transport of small molecules across the BBB .. 91
Transport across the BBB by short chain oligoglycerolipids 92
Transvascular delivery across the BBB ... 92
Trojan horse approach ... 92
Role of the transferrin-receptor system in CNS drug delivery 94
Use of receptor-mediated transcytosis to cross the BBB 94

Cell-based drug delivery to the CNS .. 95
Activated T lymphocytes ... 96
Activated microglial cells .. 96
Activated neural stem cells .. 96
Drug delivery to the CNS by using novel formulations 96
Crystalline formulations ... 96
Liposomes ... 97
Monoclonal antibodies .. 98
Microspheres .. 98
Microbeads .. 99
Brain-targeted chemical delivery systems .. 99

Nanotechnology-based drug delivery to CNS .. 100

Nanoparticles for drug delivery across the BBB .. 100
Nano- and vesicles for transport across BBB ... 101
Nanoparticle-based reserovial drug delivery to the brain 101
Penetration of BBB by nanoparticles coated with polysorbate 80 102
Targeting nicotinic acetylcholine receptor ... 102
Transcytosis of transferrin-containing nanoparticles across the BBB 102
Nanotechnology-based devices and implants for CNS 102

Biochip implants for drug delivery to the CNS 103

Controlled-release microchip ... 103
Retinal implant chip ... 103

Convection-enhanced delivery to the CNS .. 104

Systemic administration of drugs for CNS effects 104
Sustained and controlled release drug delivery to the CNS 105
Fast dissolving oral selegeline ... 106
Choice of the route of systemic delivery for effect on the CNS disorders 107

Methods of delivery of biopharmaceuticals to the CNS 107

Delivery of biopharmaceuticals across the BBB ... 107
Methods of delivery of peptides for CNS disorders 108
Alteration of properties of the BBB for delivery of peptides 108
Challenges for delivery of peptides across the BBB 108
4. Delivery of Cell, Gene and Antisense Therapies to the CNS 122
 Introduction ... 122
 Cell therapy of neurological disorders ... 122
 Methods for delivering cell therapies in CNS disorders 122
 Cerebrospinal fluid-stem cell interactions for therapy of CNS disorders 123
 Engineered stem cells for drug delivery to the brain 123
 Encapsulated cells ... 124
 Intrathecal delivery of stem cells ... 124
 Intraparenchymal delivery of stem cells to the spinal cord 125
 Intravascular administration ... 125
 Neural stem cells as therapeutic delivery vehicles 126
 Gene therapy techniques for the nervous system ... 126
 Introduction .. 126
 Methods of gene transfer to the nervous system .. 128
 AAV vector mediated gene therapy for neurogenetic disorders 128
 Ideal vector for gene therapy of neurological disorders 128
 Promoters of gene transfer .. 129
 Routes of delivery of genes to the nervous system 129
 Direct injection into CNS ... 129
 Introduction of the genes into cerebral circulation 130
 Introduction of genes into cerebrospinal fluid ... 130
 Intravenous administration of vectors ... 131
 Delivery of gene therapy to the peripheral nervous system 131
 Cell-mediated gene therapy of neurological disorders 131
 Neuronal cells ... 131
 Neural stem cells and progenitor cells ... 131
 Astrocytes ... 132
 Cerebral endothelial cells ... 132
 Implantation of genetically modified encapsulated cells into the brain 132
 Genetically modified bone marrow cells .. 132
 Nanoparticles as nonviral vectors for CNS gene therapy 133
 Applications of gene therapy for neurological disorders 133
 Companies involved in cell/gene therapy of neurological disorders 134
 Antisense therapy of CNS disorders ... 135
 Delivery of antisense oligonucleotides to the CNS 136
 Delivery of oligonucleotides cross the BBB ... 137
 Cellular delivery systems for oligonucleotides .. 138
 High-flow microinfusion into the brain parenchyma 138
 Systemic administration of peptide nucleic acids .. 138
 Introduction of antisense compounds into the CSF Pathways 139
 Intrathecal administration of antisense compounds 139
 Intracerebroventricular administration of antisense oligonucleotides 139
 Nanoparticle-based delivery of antisense therapy to the CNS 140
 Methods of delivery of ribozymes ... 140
 Delivery aspects of RNAi therapy of CNS disorders 141
 Delivery of siRNA to the CNS ... 141
 Future drug delivery strategies applicable to the CNS 142
5. Drug Delivery for Treatment of Neurological Disorders 144

5.1. Introduction ... 144

- Targeted drug delivery for neurological disorders 144

5.2. Parkinson's disease .. 144

- Drug delivery systems for Parkinson's disease 146
- Methods of delivery of levodopa in PD 147
- Duodenal levodopa infusion 147
- Inhaled levodopa .. 148
- Sublingual apomorphine 148
- Transdermal drug delivery for PD 148
- Transdermal dopamine agonists for PD 148
- Transdermal administration of other drugs for PD 150
- Intracerebral administration of GDNF 150

- Cell therapy for PD ... 151
- Human dopaminergic neurons for PD 152
- Graft survival-enhancing drugs 152
- Xenografting porcine fetal neurons 152
- Encapsulated cells for PD 153
- Stem cells for PD .. 153
- Engineered stem cells for drug delivery to the brain in PD 155
- Human retinal pigment epithelium cells for PD 155
- Delivery of cells for PD 155

- Gene therapy for Parkinson disease 156
- Rationale ... 156
- Techniques of gene therapy for PD 157
- Prospects of gene therapy for PD 160
- Companies developing gene therapy for PD 161
- RNAi therapy of Parkinson's disease 161

5.3. Alzheimer disease ... 162

- Drug delivery for Alzheimer disease 162
- Blood-brain partitioning of an AMPA receptor modulator 163
- Clearing amyloid through the BBB 164
- Delivery of the passive antibody directly to the brain ... 164
- Delivery of thyrotropin-releasing hormone analogs by molecular packaging .. 164
- Nanoparticle-based drug delivery for Alzheimer's disease . 164
- Peris temporal etanercept 165
- Slow release implant of an AChE inhibitor 166
- Intranasal insulin in Alzheimer disease 166
- Transdermal drug delivery in Alzheimer's disease ... 166
- Trojan horse approach to prevent build-up of \\nAβ aggregates ... 167
- Cell and gene therapy for Alzheimer disease 167
- NGF gene therapy ... 167
- Neprylisin gene therapy 168
- RNAi therapy of Alzheimer’s disease 169

5.4. Huntington's disease .. 169

- Treatment of HD ... 169
- Gene therapy of HD ... 170
- Encapsulated genetically engineered cellular implants .. 170
- Viral vector mediated administration of neurotrophic factors 170
- RNAi therapeutics for the treatment of HD 170

5.5. Amyotrophic lateral sclerosis 171

- Treatment of ALS .. 171
- Drug delivery in ALS 171
- Delivery of stem cell therapy for ALS 172
- Gene and antisense therapy of ALS 173
- Neurotrophic factor gene therapies of ALS 173
- Antisense therapy of ALS 175
- RNAi therapy of amyotrophic lateral sclerosis 175

5.6. Cerebrovascular disease 175

- Treatment of stroke .. 176
- Drug delivery in stroke 176
- Intraarterial administration of tissue plasminogen activator in stroke 177
- Drug delivery for prevention of restenosis of carotid arteries 178
- In-stent restenosis ... 178
- Targeted local anti-restenotic drug delivery 179
- Catheter-based drug delivery for restenosis 179
- Stents for prevention of restenosis 180
- Drug-eluting stents .. 180
- Antisense approach to prevent restenosis 181
- Drug-eluting stents for the treatment of intracranial aneurysms 181
- Tissues transplants for stroke 182
Drug delivery for traumatic brain injury .. 213
Management of migraine ... 211
Novel drug delivery methods for migraine ... 212
Nasal formulations for migraine .. 213
Sublingual spray for migraine ... 213
Needle-free drug delivery for migraine ... 213
Drug delivery for traumatic brain injury ... 213

Transplant of encapsulated tissue secreting neurotrophic factors 182
Methods for delivery of neurotrophic factors in stroke 182
Cell therapy for stroke .. 182
Stem cell transplant into the brain .. 183
Immortalized cell grafts for stroke .. 183
Intravenous infusion of marrow stromal cells .. 183
Intravenous infusion of umbilical cord blood stem cells 184
Future of cell therapy for stroke .. 184
Gene therapy of cerebrovascular diseases ... 184
Gene transfer to cerebral blood vessels ... 185
NOS gene therapy for restenosis ... 186
Gene therapy for cerebral ischemia ... 186
Gene therapy of strokes with a genetic component ... 188
Drug delivery to intracranial aneurysms .. 188
Drug delivery for vasospasm following subarachnoid hemorrhage 188
Intrathecal tissue plasminogen activator ... 189
Gene therapy for vasospasm .. 190

Drug delivery in multiple sclerosis ... 191
An electronic device for self injection of interferon beta-1a 191
Oral therapies for MS ... 191
Drug delivery for MS across the BBB ... 192
Delivery of methylprednisolone across the BBB ... 192
Monoclonal antibodies for MS and the BBB ... 192
Antisense and RNAi approaches to MS ... 192
Cell therapy for multiple sclerosis .. 193
Hematopoietic stem cell transplantation for multiple sclerosis 193
Embryonic stem cells and neural precursor cells ... 194
Gene therapy for multiple sclerosis ... 194

Drug delivery in epilepsy .. 194
Routes of administration of antiepileptic drugs ... 195
Controlled-release preparations of carbamazepine .. 195
Intravenous carbamazepine ... 195
Various routes of administration of benzodiazepines 196
Methods of delivery of novel antiepileptic therapies ... 196
Use of neuronal membrane transporter ... 196
Delivery of the antiepileptic conopeptides to the brain 196
Nasal administration of AEDs .. 197
Intracerebral administration of AEDs .. 197
The role of drug delivery in status epilepticus ... 198
Cell therapy for epilepsy ... 198
Gene therapy for epilepsy .. 199
Gene therapy for neuroprotection in epilepsy ... 199
Concluding remarks on drug delivery in epilepsy .. 200

Drug delivery for pain ... 200
Intranasal delivery of analgesics .. 201
Intranasal administration of morphine .. 202
Intranasal morphine derivatives .. 202
Intranasal fentanyl ... 203
Intranasal buprenorphine .. 203
Intranasal ketamine ... 203
Intranasal ketorolac ... 204
Delivery of analgesics by inhalation ... 204
Delivery of analgesics to peripheral nerves .. 205
Spinal delivery of analgesics ... 205
Epidural dexamethasone .. 207
Epidural morphine ... 207
Relief of pain by intrathecal ziconotide .. 208
Intrathecal neostigmine ... 208
Intrathecal prostaglandin antagonists .. 209
Intrathecal fadolimidine ... 209
Intrathecal siRNA for relief of neuropathic pain .. 209
Concluding remarks on intrathecal delivery of analgesic agents 209
Intracerebroventricular drug delivery for pain ... 210
Delivery of analgesics to the CNS across the BBB .. 210

Drug delivery for migraine ... 210
Management of migraine ... 211
Novel drug delivery methods for migraine ... 212
Nasal formulations for migraine ... 213
Sublingual spray for migraine ... 213
Needle-free drug delivery for migraine .. 213

- 8 -
6. Drug delivery for brain tumors ... 234

Introduction .. 234

Methods for evaluation of anticancer drug penetration into brain tumor ... 234

Innovative methods of drug delivery for glioblastoma ... 234

Delivery of anticancer drugs across the blood-brain barrier ... 235

Anticancer agents with increased penetration of the BBB .. 235

BBB disruption .. 236

Nanoparticle-based targeted delivery of chemotherapy across the BBB .. 237

Tyrosine kinase inhibitor increases topotecan penetration into CNS .. 239

Bypassing the BBB by alternative methods of drug delivery .. 239

Intranasal perillyl alcohol .. 239

Intraarterial chemotherapy .. 239

Enhancing tumor permeability to chemotherapy .. 240

PDE5 inhibitors for increasing BTB permeability ... 240

Local delivery of therapeutic agents into the brain .. 241

Biodegradable microspheres containing 5-FU ... 241

Carmustine biodegradable polymer implants .. 241

Fibrin glue implants containing anticancer drugs .. 242

Interstitial delivery of dexamethasone for reduction of peritumor edema ... 242

Magnetically controlled microspheres .. 242

Convection-enhanced delivery ... 243
7. Markets for Drug Delivery in CNS Disorders

Introduction ... 264

Methods of calculation of CNS drug delivery markets .. 264

Markets for CNS drug delivery technologies ... 264

Drug delivery share in selected CNS markets ... 265

CNS share of drug delivery technologies ... 265

Geographical distribution of CNS drug delivery markets 266

Impact of improved drug delivery on CNS drug markets 266

Neurodegenerative disorders .. 266

Alzheimer disease .. 267

Parkinson disease ... 267

Huntington disease ... 267

Amyotrophic lateral sclerosis ... 267

Epilepsy .. 268

Migraine and other headaches ... 268

Stroke .. 268

Central nervous system trauma .. 269

Multiple sclerosis ... 269

Brain tumors ... 269

Limitations of the current drug delivery technologies for CNS disorders 270

Unmet needs in CNS drug delivery technologies .. 270
Regulatory considerations for drugs that cross the BBB .. 271
Public-private collaboration for transfer of research to the clinic 272
Future strategies for expanding CNS drug delivery markets 272

8. Companies ... 274

9. References ... 362

Tables
Table 1-1: Landmarks in the development of drug delivery to the CNS 18
Table 2-1: Proteins expressed at the neurovascular unit .. 31
Table 2-2: Transporters that control penetration of molecules across the BBB 36
Table 2-3: Enzymes that control the penetration of molecules across the BBB.............. 40
Table 2-4: Factors that increase the permeability of the BBB 46
Table 2-5: Diseases with associated disturbances of BBB .. 47
Table 3-1: Various methods of drug delivery to the central nervous system 64
Table 3-2: Drugs available for intrathecal administration ... 74
Table 3-3: Investigational drugs administered by intrathecal route 74
Table 3-4: Strategies for drug delivery to the CNS across the BBB 80
Table 3-5: Specific inhibitors of P-glycoprotein in clinical development 88
Table 3-6: Molecules attached to Trojan horses injected intravenously for CNS effect .. 93
Table 3-7: Examples of controlled and sustained release drug delivery for CNS disorders 105
Table 3-8: Novel methods of delivery of drugs for CNS disorders 107
Table 3-9: Indications for the clinical applications of NTFs in neurologic disorders 111
Table 3-10: Methods for delivery of neurotrophic factors to the CNS 112
Table 4-1: Methods for delivering cell therapies in CNS disorders 123
Table 4-2: Classification of methods of gene therapy ... 127
Table 4-3: Methods of gene transfer as applied to neurologic disorders 128
Table 4-4: Potential indications for gene therapy of neurologic disorders 133
Table 4-5: Companies developing cell/gene therapies for CNS disorders 135
Table 4-6: Methods of antisense delivery as applied to the CNS 136
Table 5-1: Strategies for the treatment of Parkinson's disease 144
Table 5-2: Drug delivery systems for Parkinson's disease .. 146
Table 5-3: Types of cell used for investigative treatment of Parkinson's disease 151
Table 5-4: Status of cell therapies in development for Parkinson's disease 151
Table 5-5: Gene therapy techniques applicable to Parkinson disease 157
Table 5-6: Companies developing gene therapy for Parkinson's disease 161
Table 5-7: Classification of pharmacotherapy for Alzheimer disease 163
Table 5-8: Novel drug delivery methods for Alzheimer disease therapies 163
Table 5-9: Classification of neuroprotective agents for amyotrophic lateral sclerosis ... 171
Table 5-10: Methods of delivery of therapies in development for ALS 172
Table 5-11: Classification of treatments for stroke .. 176
Table 5-12: Treatments of stroke involving innovative drug delivery methods 177
Table 5-13: Drug delivery for prevention of carotid artery restenosis after angioplasty ... 179
Table 5-14: Gene transfer in animal models of carotid artery restenosis 185
Table 5-15: Neuroprotective gene transfer strategies in models of cerebral ischemia ... 186
Table 5-16: Gene Therapy for reducing cerebral infarction in animal stroke models 187
Table 5-17: Pharmacological agents for treatment of cerebral vasospasm 189
Table 5-18: Gene therapy strategies for vasospasm .. 190
Table 5-19: A classification of drug delivery methods used in management of pain 201
Table 5-20: Spinal administration of drugs for pain .. 206
Table 5-21: Investigational drugs for pain administered by intrathecal route 206
Table 5-22: Current management of migraine ... 211
Table 5-23: Novel drug delivery methods for migraine .. 212
Table 6-1: Innovative methods of drug delivery for glioblastoma 234
Table 6-2: Strategies for gene therapy of malignant brain tumors 252
Table 7-1: Share of drug delivery technologies in selected CNS markets: 2018-2028 265
Table 7-2: CNS market share of drug delivery technologies 2018-2028 265
Table 7-3: Value of CNS drug delivery in the major world markets from 2018-2028 266
Table 7-4: Limitations of the current drug delivery technologies for CNS 270
Table 8-1: Collaborations of companies in CNS drug delivery 358
Figures

Figure 1-1: Interaction of neurotransmitters with receptors ... 22
Figure 2-1: The neurovascular unit .. 30
Figure 2-2: Various forms of passage of substances across the blood brain barrier 36
Figure 2-3: Disruptive vs non-disruptive changes in BBB as response to disease 45
Figure 2-4: Role of BBB models for drug delivery in preclinical CNS drug development 59
Figure 3-1: Routes of drug delivery to the brain .. 65
Figure 3-2: Extracellular mechanism for drug transportation to the brain following intranasal administration .. 66
Figure 3-3: Penetration of CSF into spinal cord .. 73
Figure 3-4: Disposition of opioids after intrathecal administration .. 76
Figure 3-5: Use of receptor-mediated transcytosis to cross the BBB ... 94
Figure 3-6: Nanotechnology-based strategies for delivery of BDNF to the CNS 118
Figure 5-1: Oral versus transdermal administration of a drug in Parkinson’s disease 149
Figure 5-2: Effect of tyrosine hydroxylase gene delivery on dopamine levels 158
Figure 5-3: Trojan horse approach for delivery of AGT-181 to the brain .. 221
Figure 6-1: A concept of targeted drug delivery to glioblastoma across the BBB 237
Figure 6-2: Mechanism of antitumor effects of poliovirus-based vaccine for glioblastoma 259
Figure 7-1: Unmet needs in the CNS drug delivery technologies ... 271