Drug Delivery in Central Nervous System Disorders
Technologies, Companies and Markets

By
Prof. K. K. Jain
MD, FRACS, FFPM
Jain PharmaBiotech
Basel, Switzerland

June 2019

A Jain PharmaBiotech Report
AUTHOR'S BIOGRAPHY

Professor K. K. Jain is a neurologist/neurosurgeon by training with specialist’s qualifications. His personal experience includes some of the technologies mentioned in this report. He received graduate training in both Europe and USA and has held academic positions in several countries. He is a Fellow of the Faculty of Pharmaceutical Medicine of the Royal College of Physicians of UK and has been working in the biotechnology/biopharmaceuticals industry for several years. Currently he is a consultant at Jain PharmaBiotech. Prof. Jain’s 482 publications include 31 books (6 as editor + 25 as author) and 50 special reports, which have covered important areas in biotechnology, neurology, and pharmaceuticals.

ABOUT THIS REPORT

The original report on Drug Delivery in CNS Diseases by the author was published by Decision Resources Inc in 2000 as an enlargement of the chapter on this topic in his report on Drug Delivery Technologies (1998), which was also published by Decision Resources. The second edition was rewritten and published at Jain PharmaBiotech in 2004 and is being constantly rewritten since then.

June 2019 (constantly updated since first edition published in 2000 by Decision Resources Inc)
Copyright © 2019 by

Jain PharmaBiotech
Bläsiring 7
CH-4057 Basel
Switzerland

Tel & Fax: +4161-6924461
Email: info@pharmabiotec.ch
Web site: http://pharmabiotec.ch/

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise without the prior written permission of the Publisher. This report may not be lent, resold or otherwise traded in any manner without the consent of the Publisher. While all reasonable steps have been taken to ensure the accuracy of the information presented, the Publisher cannot accept responsibility for inadvertent errors or omissions.
Table of Contents

0. Executive Summary ... 16

1. Basics of Drug Delivery to the Central Nervous System .. 18
 Introduction .. 18
 Historical evolution of drug delivery for CNS disorders .. 18
 Neuroanatomical and neurophysiological basis of drug delivery 19
 The cerebrospinal fluid .. 19
 The lymphatic drainage system of the brain ... 20
 The extracellular space in the brain ... 20
 Neurotransmitters ... 21
 Extracellular vesicles as drug delivery vehicles .. 23
 Neuropharmacology relevant to drug delivery .. 23
 Introduction to neuropharmacology ... 23
 Pharmacodynamics .. 24
 Receptors .. 24
 Sites of drug action in the CNS .. 24
 Receptors coupled to guanine nucleotide binding proteins 25
 Acetylcholine receptor channels ... 25
 Dopamine receptors ... 25
 GABA receptor channels .. 26
 Glutamate receptor channels ... 26
 Non-competitive NMDA antagonists ... 26
 Serotonin receptors .. 27
 G-protein coupled receptors .. 27
 In vivo study of drug action in the CNS in human patients 27
 Electroencephalography .. 27
 Brain imaging ... 28
 Chronopharmacology as applied to the CNS ... 28
 Role of drug delivery in personalized therapy of CNS disorders 29

2. Blood Brain Barrier .. 30
 Introduction ... 30
 Features of the blood-brain barrier relevant to CNS drug delivery 30
 The neurovascular unit ... 30
 Functions of the BBB ... 31
 BBB as an anatomical as well as physiological barrier ... 31
 BBB as a biochemical barrier ... 32
 Glucose transporters at the BBB ... 32
 Role of shear stress on development of BBB .. 33
 Genomics of BBB .. 33
 Proteomics of BBB .. 34
 Other neural barriers .. 34
 Blood-cerebrospinal fluid barrier ... 34
 Blood nerve barrier ... 35
 Blood-retinal barrier .. 35
 Blood-labyrinth barrier .. 35
 Passage of substances across the blood-brain barrier .. 35
 Transporters localized in the BBB .. 36
 Adenosine carrier ... 37
 Amino acid transporters .. 37
 Eflux transport systems .. 38
 Glucose transporter ... 39
 Ionic transporter ... 39
 BBB-specific enzymes ... 40
 Receptor-mediated transcytosis ... 40
 Lyrophosphatidic acid-mediated increase in BBB permeability 41
 Folate transport system ... 41
 Transferrin receptor .. 41
 Molecular biology of the BBB .. 41
 Transport of peptides and proteins across the BBB ... 42
 Passage of leptin across the BBB ... 42
 Passage of cytokines across the BBB ... 42
 Passage of hormones across the BBB .. 43
 Passage of enzymes across the BBB ... 43
3. Methods of Drug Delivery to the CNS ... 64
 Introduction .. 64
 Routes of drug delivery to the brain .. 65
 Drug delivery to the brain via the nasal route 65
 Devices for nasal administration of drugs for CNS 66
 Nasal mucosal patch to facilitate drug delivery across the BBB 68
 Passage of viruses to the brain via the nasal route 68
 Potential and limitations of nasal drug delivery to the brain 68
 Drugs that can be delivered to the brain via the nasal route 69
 Erythropoietin ... 69
 Esketamine ... 69
 Hypocretin .. 69
 IFN beta-1b .. 69
 Lysosomal enzymes ... 70
 Midazolam ... 70
 Neurrotrophic factors ... 70
 Thyrotropin-releasing hormone ... 71
 Neuroprotective drugs for stroke ... 71
 Transdermal drug delivery for neurological disorders 72
 Drug delivery to the brain via inner ear 72
 Drug delivery for disorders of the spinal cord 72
 Intrathecal drug delivery ... 72
 Anatomical & physiological aspects of intrathecal drug delivery 73
 Advantages of intrathecal drug delivery 73
 Drugs that can be delivered by intrathecal route 74
 Pharmacokinetics of intrathecal drug delivery 75
 Retrograde delivery to the brain via the epidural venous system 76
Methods of delivery of biopharmaceuticals to the CNS

- Convection
- Biochip implants for drug delivery to the CNS
- Strategies for drug delivery to the CNS across the BBB
- Controlled
- Nanotechnology
- Brain
- Drug delivery to the CNS by using novel formulations
- Invasive neurosurgical approaches
- Devices for drug delivery to the CNS
- Catheters for drug delivery to the CNS
- Reservoirs and pumps for drug delivery to the CNS
- Intraarterial drug delivery to the brain
- Direct injection into the CNS substance or CNS lesions
- Targeted delivery of biologicals to the spinal cord by microinjection
- Intraventricular injection of drugs

Strategies for drug delivery to the CNS across the BBB

- Increasing the permeability (opening) of the BBB
- Osmotic opening of the BBB
- Focal disruption of BBB by ultrasound
- Chemical opening of the BBB
- Cerebral vasodilatation to open the BBB
- Modulation of vascular permeability by laser irradiation
- Neurostimulation for opening BBB
- Use of nitric oxide donors to open the BBB
- Manipulation of the sphingosine 1-phosphate receptor system

Pharmacological strategies to facilitate transport across the BBB

- ABC afflux transporters and penetration of the BBB
- Adenosine agonist-mediated drug delivery across the BBB
- Carrier-mediated drug delivery across the BBB
- Fusion of receptor-binding peptide from apoE with therapeutic protein
- G-Technology®
- Glycosylation Independent Lysosomal Targeting
- Inhibition of P-glycoprotein to enhance drug delivery across BBB
- LipoBridge™ technology
- Modification of the drug to enhance its lipid solubility
- Monoclonal antibody fusion proteins
- Neuroimmunophils
- Peptide-mediated transport across the BBB
- Prodrug bioconversion strategies and their CNS selectivity
- Transport of small molecules across the BBB
- Transport across the BBB by short chain oligoglycerolipids
- Transvascular delivery across the BBB
- Trojan horse approach
- Role of the transferrin-receptor system in CNS drug delivery
- Use of receptor-mediated transcytosis to cross the BBB

Cell-based drug delivery to the CNS

- Activated T lymphocytes
- Microglial cells
- Neural stem cells
- Drug delivery to the CNS by using novel formulations
- Crystalline formulations
- Liposomes
- Monoclonal antibodies
- Microspheres
- Microbeads

Brain-targeted chemical delivery systems

- Nanotechnology-based drug delivery to CNS

Nanoparticles for drug delivery across the BBB
- Nanovesicles for transport across BBB
- Nanoparticle-based reservoir drug delivery to the brain
- Penetration of BBB by nanoparticles coated with polysorbate 80
- Targeting nicotinic acetylcholine receptor
- Transcytosis of transferrin-containing nanoparticles across the BBB

Nanotechnology-based devices and implants for CNS

Biochip implants for drug delivery to the CNS
- Controlled-release microchip
- Retinal implant chip

Convection-enhanced delivery to the CNS

Systemic administration of drugs for CNS effects

Sustained and controlled release drug delivery to the CNS
- Fast dissolving oral selegiline
- Choice of the route of systemic delivery for effect on the CNS disorders

Methods of delivery of biopharmaceuticals to the CNS

Delivery of biopharmaceuticals across the BBB
- Methods of delivery of peptides for CNS disorders
- Alteration of properties of the BBB for delivery of peptides
- Challenges for delivery of peptides across the BBB

-
4. Delivery of Cell, Gene and Antisense Therapies to the CNS

Introduction ... 122

Cell therapy of neurological disorders 122

Methods for delivering cell therapies in CNS disorders 122

Cerebrospinal fluid-stem cell interactions for therapy of CNS disorders .. 123

Engineered stem cells for drug delivery to the brain 123

Encapsulated cells .. 124

Intrathecal delivery of stem cells 124

Intraparenchymal delivery of stem cells to the spinal cord 125

Intravascular administration .. 125

Neural stem cells as therapeutic delivery vehicles 126

Gene therapy techniques for the nervous system 126

Introduction .. 126

Methods of gene transfer to the nervous system 128

AAV vector mediated gene therapy for neurogenetic disorders ... 128

Ideal vector for gene therapy of neurological disorders 128

Promoters of gene transfer ... 129

Routes of delivery of genes to the nervous system 129

Direct injection into CNS ... 129

Introduction of the genes into cerebral circulation 130

Introduction of genes into cerebrospinal fluid 130

Intravenous administration of vectors 131

Delivery of gene therapy to the peripheral nervous system ... 131

Cell-mediated gene therapy of neurological disorders 131

Neuronal cells ... 131

Neural stem cells and progenitor cells 131

Astrocytes ... 132

Cerebral endothelial cells .. 132

Implantation of genetically modified encapsulated cells into the brain ... 132

Genetically modified bone marrow cells 132

Nanoparticles as nonviral vectors for CNS gene therapy ... 133

Applications of gene therapy for neurological disorders 133

Companies involved in cell/gene therapy of neurological disorders ... 134

Antisense therapy of CNS disorders 135

Delivery of antisense oligonucleotides to the CNS 136

Delivery of oligonucleotides across the BBB 137

Cellular delivery systems for oligonucleotides 138

High-flow microinfusion into the brain parenchyma 138

Systemic administration of peptide nucleic acids 138

Introduction of antisense compounds into the CSF Pathways ... 139

Intrathecal administration of antisense compounds 139

Intracerebroventricular administration of antisense oligonucleotides .. 139

Nanoparticle-based delivery of antisense therapy to the CNS ... 140

Methods of delivery of ribozymes 140

Delivery aspects of RNAi therapy of CNS disorders 141

Delivery of siRNA to the CNS ... 141

Future drug delivery strategies applicable to the CNS 142

Use of microorganisms for therapeutic entry into the brain ... 118

Bacteriophages as CNS therapeutics 118

Intracellular drug delivery in the brain 118

Local factors in the CNS affecting drug action 119

Methods for testing drug delivery to the CNS 119

Animal models for testing drug delivery 119

Screening for drug-P-gp interaction at BBB 119

CNS delivery of peptides via conjugation to biological carriers ... 108

Delivery of conopeptides to the brain 109

Direct delivery of neuropeptides into the brain 109

Molecular manipulations of peptides to facilitate transport into CNS .. 110

Transport to spinal cord motor neurons after peripheral injection .. 110

Transnasal administration of neuropeptides 110

Delivery of neurotrophic factors to the nervous system 111

Systemic administration of NTFs 113

Delivery systems to facilitate crossing of the BBB by NTFs ... 113

Direct application of NTFs to the CNS 114

Intracerebroventricular injection 114

Intrathecal administration ... 115

Implants for delivery of neurotrophic factors 115

Use of neurotrophic factor mimics 116

Use of microspheres for delivery of neurotrophic factors ... 117

Use of nanobiotechnology for delivery of neurotrophic factors ... 117

Use of microorganisms for therapeutic entry into the brain ... 118

Bacteriophages as CNS therapeutics 118

Intracellular drug delivery in the brain 118

Local factors in the CNS affecting drug action 119

Methods for testing drug delivery to the CNS 119

Animal models for testing drug delivery 119

Screening for drug-P-gp interaction at BBB 119

Cell therapy of neurological disorders 122

Methods for delivering cell therapies in CNS disorders 122

Cerebrospinal fluid-stem cell interactions for therapy of CNS disorders .. 123

Engineered stem cells for drug delivery to the brain 123

Encapsulated cells .. 124

Intrathecal delivery of stem cells 124

Intraparenchymal delivery of stem cells to the spinal cord 125

Intravascular administration .. 125

Neural stem cells as therapeutic delivery vehicles 126

Gene therapy techniques for the nervous system 126

Introduction .. 126

Methods of gene transfer to the nervous system 128

AAV vector mediated gene therapy for neurogenetic disorders ... 128

Ideal vector for gene therapy of neurological disorders 128

Promoters of gene transfer ... 129

Routes of delivery of genes to the nervous system 129

Direct injection into CNS ... 129

Introduction of the genes into cerebral circulation 130

Introduction of genes into cerebrospinal fluid 130

Intravenous administration of vectors 131

Delivery of gene therapy to the peripheral nervous system ... 131

Cell-mediated gene therapy of neurological disorders 131

Neuronal cells ... 131

Neural stem cells and progenitor cells 131

Astrocytes ... 132

Cerebral endothelial cells .. 132

Implantation of genetically modified encapsulated cells into the brain ... 132

Genetically modified bone marrow cells 132

Nanoparticles as nonviral vectors for CNS gene therapy ... 133

Applications of gene therapy for neurological disorders 133

Companies involved in cell/gene therapy of neurological disorders ... 134

Antisense therapy of CNS disorders 135

Delivery of antisense oligonucleotides to the CNS 136

Delivery of oligonucleotides across the BBB 137

Cellular delivery systems for oligonucleotides 138

High-flow microinfusion into the brain parenchyma 138

Systemic administration of peptide nucleic acids 138

Introduction of antisense compounds into the CSF Pathways ... 139

Intrathecal administration of antisense compounds 139

Intracerebroventricular administration of antisense oligonucleotides .. 139

Nanoparticle-based delivery of antisense therapy to the CNS ... 140

Methods of delivery of ribozymes 140

Delivery aspects of RNAi therapy of CNS disorders 141

Delivery of siRNA to the CNS ... 141

Future drug delivery strategies applicable to the CNS 142
5. Drug Delivery for Treatment of Neurological Disorders

Introduction .. 144

Targeted drug delivery for neurological disorders .. 144

Parkinson's disease .. 144

Drug delivery systems for Parkinson's disease ... 146

Methods of delivery of levodopa in PD ... 147

Duodenal levodopa infusion .. 147

Inhaled levodopa .. 148

Sublingual apomorphine ... 148

Transdermal drug delivery for PD ... 148

Transdermal dopamine agonists for PD ... 148

Transdermal administration of other drugs for PD ... 150

Intracerebral administration of GDNF ... 150

Cell therapy for PD ... 151

Human dopaminergic neurons for PD ... 152

Graft survival-enhancing drugs .. 152

Xenografting porcine fetal neurons ... 152

Encapsulated cells for PD ... 153

Stem cells for PD .. 153

Engineered stem cells for drug delivery to the brain in PD 155

Human retinal pigment epithelium cells for PD ... 155

Delivery of cells for PD ... 155

Gene therapy for Parkinson disease ... 156

Rationale .. 156

Techniques of gene therapy for PD ... 157

Prospects of gene therapy for PD ... 160

Companies developing gene therapy for PD ... 161

RNAi therapy of Parkinson's disease .. 161

Alzheimer disease ... 162

Drug delivery for Alzheimer disease ... 162

Blood-brain partitioning of an AMPA receptor modulator 163

Clearing amyloid through the BBB ... 164

Delivery of the passive antibody directly to the brain 164

Delivery of thyrotropin-releasing hormone analogs by molecular packaging 164

Nanoparticle-based drug delivery for Alzheimer’s disease 164

Perisinal etanercept ... 165

Slow release implant of an AChE inhibitor ... 166

Intranasal insulin in Alzheimer disease ... 166

Transdermal drug delivery in Alzheimer’s disease .. 166

Trojan-horse approach to prevent build-up of Aβ aggregates 167

Cell and gene therapy for Alzheimer disease ... 167

NGF gene therapy .. 167

Nephrilysin gene therapy ... 168

RNAI therapy of Alzheimer’s disease .. 169

Huntington's disease .. 169

Treatment of HD ... 169

Gene therapy of HD ... 170

Encapsulated genetically engineered cellular implants 170

Viral vector mediated administration of neurotrophic factor II in HD 170

RNAI therapeutics for the treatment of HD ... 170

Amyotrophic lateral sclerosis .. 171

Treatment of ALS ... 171

Drug delivery in ALS ... 171

Delivery of stem cell therapy for ALS ... 172

Gene and antisense therapy of ALS .. 173

Neurotrophic factor gene therapies of ALS ... 173

Antisense therapy of ALS ... 175

RNAI therapy of amyotrophic lateral sclerosis ... 175

Cerebrovascular disease .. 175

Treatment of stroke ... 176

Drug delivery in stroke .. 176

Intraarterial administration of tissue plasminogen activator in stroke 177

Drug delivery for prevention of restenosis of carotid arteries 178

In-stent restenosis .. 178

Targeted local anti-restenotic drug delivery ... 179

Catheter-based drug delivery for restenosis ... 179

Stents for prevention of restenosis ... 180

Drug-eluting stents ... 180

Antisense approach to prevent restenosis ... 181

Drug-eluting stents for the treatment of intracranial aneurysm 181

Tissues transplants for stroke ... 182
6. Drug delivery for brain tumors ... 234

Introduction ... 234

Methods for evaluation of anticancer drug penetration into brain tumor 234
Innovative methods of drug delivery for glioblastoma 234

Delivery of anticancer drugs across the blood-brain barrier 235

Anticancer agents with increased penetration through the BBB 235
BBB disruption .. 236
Nanoparticle-based targeted delivery of chemotherapy across the BBB 237
Tyrosine kinase inhibitor increases topotecan penetration into CNS 239

Bypassing the BBB by alternative methods of drug delivery 239

Intranasal perillyl alcohol .. 239
Intraarterial chemotherapy .. 239

Enhancing tumor permeability to chemotherapy 240

PDE5 inhibitors for increasing BTB permeability 240

Local delivery of therapeutic agents into the brain 241

Biodegradable microspheres containing 5-FU 241
Carmustine biodegradable polymer implants 241
Fibrin glue implants containing anticancer drugs 242
Interstitial delivery of dexamethasone for reduction of peritumor edema 242
Magnetically controlled microspheres ... 242

Convection-enhanced delivery ... 243
7. Markets for Drug Delivery in CNS Disorders

Introduction ... 264

Methods of calculation of CNS drug delivery markets 264

Markets for CNS drug delivery technologies 264

Drug delivery share in selected CNS markets 265

CNS share of drug delivery technologies 265

Geographical distribution of CNS drug delivery markets 266

Impact of improved drug delivery on CNS drug markets 266

Neurodegenerative disorders 266

Alzheimer disease ... 267

Parkinson disease .. 267

Huntington disease .. 267

Amyotrophic lateral sclerosis 267

Epilepsy .. 268

Migraine and other headaches .. 268

Stroke .. 268

Central nervous system trauma 269

Multiple sclerosis .. 269

Brain tumors .. 269

Limitations of the current technologies for CNS delivery 270

Unmet needs in CNS drug delivery technologies 270
Regulatory considerations for drugs that cross the BBB ... 271
Public-private collaboration for transfer of research to the clinic .. 272
Future strategies for expanding CNS drug delivery markets .. 272
Education of neurologists ... 272
Demonstration of the advantages of the newer methods of delivery ... 273
Rescue of old products by novel drug delivery methods ... 273
Facilitation of the approval process of new drugs ... 273

8. Companies ... 274
Introduction .. 274
Profiles of companies ... 274
Collaborations .. 358

9. References ... 362

Tables
Table 1-1: Landmarks in the development of drug delivery to the CNS ... 18
Table 2-1: Proteins expressed at the neurovascular unit ... 31
Table 2-2: Transporters that control penetration of molecules across the BBB 36
Table 2-3: Enzymes that control the penetration of molecules across the BBB 40
Table 2-4: Factors that increase the permeability of the BBB ... 46
Table 2-5: Diseases with associated disturbances of BBB ... 47
Table 3-1: Various methods of drug delivery to the central nervous system 64
Table 3-2: Drugs available for intrathecal administration .. 74
Table 3-3: Investigational drugs administered by intrathecal route .. 74
Table 3-4: Strategies for drug delivery to the CNS across the BBB .. 80
Table 3-5: Specific inhibitors of P-glycoprotein in clinical development .. 88
Table 3-6: Molecules attached to Trojan horses injected intravenously for CNS effect 93
Table 3-7: Examples of controlled and sustained release drug delivery for CNS disorders 105
Table 3-8: Novel methods of delivery of drugs for CNS disorders ... 107
Table 3-9: Indications for the clinical applications of NTFs in neurologic disorders 111
Table 3-10: Methods for delivery of neurotrophic factors to the CNS .. 112
Table 4-1: Methods for delivering cell therapies in CNS disorders .. 123
Table 4-2: Classification of methods of gene therapy ... 127
Table 4-3: Methods of gene transfer as applied to neurologic disorders 128
Table 4-4: Potential indications for gene therapy of neurologic disorders 133
Table 4-5: Companies developing cell/gene therapies for CNS disorders 135
Table 4-6: Methods of antisense delivery as applied to the CNS .. 136
Table 5-1: Strategies for the treatment of Parkinson's disease ... 144
Table 5-2: Drug delivery systems for Parkinson's disease .. 146
Table 5-3: Types of cell used for investigative treatment of Parkinson's disease 151
Table 5-4: Status of cell therapies in development for Parkinson's disease 151
Table 5-5: Gene therapy techniques applicable to Parkinson disease .. 157
Table 5-6: Companies developing gene therapy for Parkinson's disease 161
Table 5-7: Classification of pharmacotherapy for Alzheimer disease ... 162
Table 5-8: Novel drug delivery methods for Alzheimer disease therapies 163
Table 5-9: Classification of neuroprotective agents for amyotrophic lateral sclerosis 171
Table 5-10: Methods of delivery of therapies in development for ALS .. 172
Table 5-11: Classification of treatments for stroke ... 176
Table 5-12: Treatments of stroke involving innovative drug delivery methods 177
Table 5-13: Drug delivery for prevention of carotid artery restenosis after angioplasty 179
Table 5-14: Gene transfer in animal models of carotid artery restenosis 185
Table 5-15: Neuroprotective gene transfer strategies in models of cerebral ischemia 186
Table 5-16: Gene Therapy for reducing cerebral infarction in animal stroke models 187
Table 5-17: Pharmacological agents for treatment of cerebral vasospasm 189
Table 5-18: Gene therapy strategies for vasospasm ... 190
Table 5-19: A classification of drug delivery methods used in management of pain 201
Table 5-20: Spinal administration of drugs for pain ... 206
Table 5-21: Investigational drugs for pain administered by intrathecal route 206
Table 5-22: Current management of migraine .. 211
Table 5-23: Novel drug delivery methods for migraine .. 212
Table 6-1: Innovative methods of drug delivery for glioblastoma .. 234
Table 6-2: Strategies for gene therapy of malignant brain tumors ... 252
Table 7-1: Share of drug delivery technologies in selected CNS markets: 2018-2028 265
Table 7-2: CNS market share of drug delivery technologies 2018-2028 265
Table 7-3: Value of CNS drug delivery in the major world markets from 2018-2028 266
Table 7-4: Limitations of the current drug delivery technologies for CNS 270
Table 8-1: Collaborations of companies in CNS drug delivery .. 358
Figures

Figure 1-1: Interaction of neurotransmitters with receptors ... 22
Figure 2-1: The neurovascular unit .. 30
Figure 2-2: Various forms of passage of substances across the blood brain barrier.......................... 36
Figure 2-3: Disruptive vs non-disruptive changes in BBB as response to disease............................. 45
Figure 2-4: Role of BBB models for drug delivery in preclinical CNS drug development 59
Figure 3-1: Routes of drug delivery to the brain .. 65
Figure 3-2: Extracellular mechanism for drug transportation to the brain following intranasal administration ... 66
Figure 3-3: Penetration of CSF into spinal cord .. 73
Figure 3-4: Disposition of opioids after intrathecal administration .. 76
Figure 3-5: Use of receptor-mediated transcytosis to cross the BBB ... 94
Figure 3-6: Nanotechnology-based strategies for delivery of BDNF to the CNS 118
Figure 5-1: Oral versus transdermal administration of a drug in Parkinson's disease 149
Figure 5-2: Effect of tyrosine hydroxylase gene delivery on dopamine levels 158
Figure 5-3: Trojan horse approach for delivery of AGT-181 to the brain 221
Figure 6-1: A concept of targeted drug delivery to glioblastoma across the BBB 237
Figure 6-2: Mechanism of antitumor effects of poliovirus-based vaccine for glioblastoma 259
Figure 7-1: Unmet needs in the CNS drug delivery technologies .. 271