Drug Delivery in Central Nervous System Disorders
Technologies, Companies and Markets

By
Prof. K. K. Jain
MD, FRACS, FFPM
Jain PharmaBiotech
Basel, Switzerland

August 2017

A Jain PharmaBiotech Report
AUTHOR'S BIOGRAPHY

Professor K. K. Jain is a neurologist/neurosurgeon by training with specialist's qualifications. His personal experience includes some of the technologies mentioned in this report. He received graduate training in both Europe and USA, and has held academic positions in several countries. He is a Fellow of the Faculty of Pharmaceutical Medicine of the Royal College of Physicians of UK and has been working in the biotechnology/biopharmaceuticals industry for several years. Currently he is a consultant at Jain PharmaBiotech. Prof. Jain's 470 publications include 28 books (5 as editor + 23 as author) and 50 special reports, which have covered important areas in biotechnology, neurology, and pharmaceuticals.

ABOUT THIS REPORT

The original report on Drug Delivery in CNS Diseases by the author was published by Decision Resources Inc in 2000 as an enlargement of the chapter on this topic in his report on Drug Delivery Technologies (1998), which was also published by Decision Resources. The second edition was rewritten and published at Jain PharmaBiotech in 2004 and is being constantly rewritten since then.
Table of Contents

0. Executive Summary ... 16

1. Basics of Drug Delivery to the Central Nervous System 18
 Introduction .. 18
 Historical evolution of drug delivery for CNS disorders 18
 Neuroanatomical and neurophysiological basis of drug delivery 19
 The cerebrospinal fluid ... 19
 The lymphatic drainage system of the brain 19
 The extracellular space in the brain .. 20
 Neurotransmitters .. 21
 Extracellular vesicles as drug delivery vehicles 23
 Neuropharmacology relevant to drug delivery 23
 Introduction to neuropharmacology ... 23
 Pharmacokinetics ... 23
 Absorption and distribution of drugs 23
 Drug metabolism and elimination ... 24
 Pharmacodynamics .. 24
 Receptors .. 24
 Sites of drug action in the CNS .. 24
 Receptors coupled to guanine nucleotide binding proteins 25
 Acetylcholine receptor channels .. 25
 Dopamine receptors .. 25
 GABA receptor channels ... 26
 Glutamate receptor channels ... 26
 Non-competitive NMDA antagonists 26
 Serotonin receptors .. 27
 G-protein coupled receptors .. 27
 In vivo study of drug action in the CNS in human patients 27
 Electroencephalography .. 27
 Brain imaging ... 28
 Role of drug delivery in personalized therapy of CNS disorders 29

2. Blood Brain Barrier ... 30
 Introduction .. 30
 Features of the blood-brain barrier relevant to CNS drug delivery 30
 The neurovascular unit ... 30
 Functions of the BBB .. 31
 BBB as an anatomical as well as physiological barrier 31
 BBB as a biochemical barrier .. 31
 Role of shear stress on development of BBB 32
 Genomics of BBB .. 33
 Proteomics of BBB ... 33
 Other neural barriers ... 34
 Blood-cerebrospinal fluid barrier .. 34
 Blood nerve barrier ... 34
 Blood-retinal barrier .. 35
 Blood-labyrinth barrier .. 35
 Passage of substances across the blood-brain barrier 35
 Transporters localized in the BBB .. 36
 Amino acid transporters .. 37
 Efflux transport systems .. 37
 Glucose transporter ... 38
 Ionic transporter ... 39
 BBB-specific enzymes .. 39
 Receptor-mediated transcytosis ... 39
 Lyso phosphatidic acid-mediated increase in BBB permeability 40
 Folate transport system .. 40
 Transferrin receptor ... 40
 Molecular biology of the BBB .. 41
 Transport of peptides and proteins across the BBB 41
 Passage of leptin across the BBB .. 41
 Passage of cytokines across the BBB 42
 Passage of hormones across the BBB 42
 Passage of enzymes across the BBB 43
 Passage of omega-3 fatty acids across the BBB 43

- 3 -
3. Methods of Drug Delivery to the CNS

3.1. Routes of drug delivery to the brain

3.1.1. Drug delivery to the brain via the nasal route

- Devices for nasal administration of drugs for CNS
- Nasal mucosal patch to facilitate drug delivery across the BBB
- Passage of viruses to the brain via the nasal route
- Potential and limitations of nasal drug delivery to the brain
- Drugs that can be delivered to the brain via the nasal route
- Erythropoietin...
- Esketamine...
- Hypocretin...
- IFN beta-1b...
- Lysosomal enzymes...
- Midazolam...
- Neurotrophic factors...
- Thyrotropin-releasing hormone...
- Neuroprotective drugs for stroke...

3.1.2. Transdermal drug delivery for neurological disorders

- Drug delivery to the brain via the nasal route...
- Drug delivery for disorders of the spinal cord...
- Intrathecal drug delivery...
- Advantages of intrathecal drug delivery...
- Drugs that can be delivered by intrathecal route...
- Pharmacokinetics of intrathecal drug delivery...
- Retrograde delivery to the brain via the epidural venous system...

3.1.3. Reservoirs and pumps for drug delivery to the CNS

- Devices for drug delivery to the CNS...
- Catheters for drug delivery to the CNS...
- Reservoirs and pumps for drug delivery to the CNS...
- Invasive neurosurgical approaches...
Intraarterial drug delivery to the brain ... 75
Direct injection into the CNS substance or CNS lesions 76
Targeted delivery of biologicals to the spinal cord by microinjection 76
Intraventricular injection of drugs ... 77

Strategies for drug delivery to the CNS across the BBB 77
Increasing the permeability (opening) of the BBB 78
Osmotic opening of the BBB .. 78
Cerebral vasodilatation to open the BBB 78
Focal disruption of BBB by ultrasound .. 78
Chemical opening of the BBB .. 78
Cerebral vasodilatation to open the BBB 78
Modulation of vascular permeability by laser irradiation 79
Neurostimulation for opening BBB ... 80
Use of nitric oxide donors to open the BBB 80
Manipulation of the sphingosine 1-phosphate receptor system 80

Pharmacological strategies to facilitate transport across the BBB 81

CNS selectivity

2B-Trans™ technology ... 81
ABC afflux transporters and penetration of the BBB 82
Adenosine agonist-mediated drug delivery across the BBB 83
Carrier-mediated drug delivery across the BBB 83
Fusion of receptor-binding peptide from apoE with therapeutic protein ... 84
G-Technology® .. 84
Glycosylation Independent Lyosomal Targeting 84
Inhibition of P-glycoprotein to enhance drug delivery across the BBB 85
LipoBridge™ technology .. 85
Modification of the drug to enhance its lipid solubility 85
Monoclonal antibody fusion proteins .. 86
Neuroimmunophilins .. 87
Peptide-mediated transport across the BBB .. 87
Prodrug bioconversion strategies and their CNS selectivity 89
Transport of small molecules across the BBB 89
Transport across the BBB by short chain oligoglycerolipids 89
Transvascular delivery across the BBB .. 90
Trojan horse approach .. 90
Role of the transferrin-receptor system in CNS drug delivery 91
Use of receptor-mediated transcytosis to cross the BBB 91

Cell-based drug delivery to the CNS .. 93
Activated T lymphocytes .. 93
Microglial cells ... 93
Neural stem cells ... 93

Drug delivery to the CNS by using novel formulations 94
Crystalline formulations .. 94
Liposomes .. 94
Monoclonal antibodies .. 95
Microspheres .. 96
Microbeads .. 96

Brain-targeted chemical delivery systems .. 97

Nanotechnology-based drug delivery to CNS .. 98
Nanoparticles for drug delivery across the BBB 98
NanoDel™ technology for crossing the BBB 98
Masking BBB-limiting characteristics by nanotechnology 99
Nanofoamers for transport across BBB .. 99
Peptide-nanoparticle conjugates for crossing the BBB 99
Penetration of BBB by nanoparticles coated with polysorbate 80 99
Transcytosis of transferrin-containing nanoparticles across the BBB 100

Biocompatible implant systems and devices for CNS 100

Biochip implants for drug delivery to the CNS 101

Convection-enhanced delivery to the CNS ... 101

Systemic administration of drugs for CNS effects 102

Sustained and controlled release drug delivery to the CNS 102
Fast dissolving oral selegiline .. 104
Choice of the route of systemic delivery for effect on the CNS disorders 104

Methods of delivery of biopharmaceuticals to the CNS 105

Delivery of biopharmaceuticals across the BBB 105
Methods of delivery of peptides for CNS disorders 105
Alteration of properties of the BBB for delivery of peptides 106
Challenges for delivery of peptides across the BBB 106
CNS delivery of peptides via conjugation to biological carriers 106
Delivery of conopeptides to the brain .. 106
Direct delivery of neuropeptides into the brain 107
4. Delivery of Cell, Gene and Antisense Therapies to the CNS...... 120

Introduction................................. 120

Cell therapy of neurological disorders ... 120

Methods for delivering cell therapies in CNS disorders 120

Cerebrospinal fluid-stem cell interactions for therapy of CNS disorders 121

Engineered stem cells for drug delivery to the brain 121

Encapsulated cells.. 122

Intrathecal delivery of stem cells to the spinal cord 123

Intravascular administration.. 123

Neural stem cells as therapeutic delivery vehicles 124

Gene therapy techniques for the nervous system .. 124

Introduction .. 124

Methods of gene transfer to the nervous system 126

AAV vector mediated gene therapy for neurogenic disorders 126

Ideal vector for gene therapy of neurological disorders 126

Promoters of gene transfer.. 127

Routes of delivery of genes to the nervous system 127

Direct injection into CNS .. 127

Introduction of the genes into cerebral circulation 128

Introduction of genes into cerebrospinal fluid .. 128

Intravenous administration of vectors.. 129

Delivery of gene therapy to the peripheral nervous system 129

Cell-mediated gene therapy of neurological disorders 129

Neuronal cells.. 129

Neural stem cells and progenitor cells .. 129

Astrocytes.. 130

Cerebral endothelial cells .. 130

Implantation of genetically modified encapsulated cells into the brain 130

Genetically modified bone marrow cells .. 130

Nanoparticles as nonviral vectors for CNS gene therapy 131

Applications of gene therapy for neurological disorders 131

Companies involved in cell/gene therapy of neurological disorders 132

Antisense therapy of CNS disorders ... 133

Delivery of antisense oligonucleotides to the CNS 133

Delivery of oligonucleotides cross the BBB .. 135

Cellular delivery systems for oligonucleotides 136

High-flow microinfusion into the brain parenchyma 136

Systemic administration of peptide nucleic acids 136

Introduction of antisense compounds into the CSF Pathways 137

Intrathecal administration of antisense compounds 137

Intracerebroventricular administration of antisense oligonucleotides 137

Nanoparticle-based delivery of antisense therapy to the CNS 138

Methods of delivery of ribozymes .. 138

Delivery aspects of RNAi therapy of CNS disorders 139

Delivery of siRNA to the CNS .. 139

Future drug delivery strategies applicable to the CNS 140

5. Drug Delivery for Treatment of Neurological Disorders 142

Introduction .. 142

Molecular manipulations of peptides to facilitate transport into CNS 107

Transport to spinal cord motor neurons after peripheral injection 108

Transnasal administration of neuropeptides .. 108

Delivery of neurotrophic factors to the nervous system 108

Systemic administration of NTFs .. 110

Delivery systems to facilitate crossing of the BBB by NTFs 111

Direct application of NTFs to the CNS .. 111

Intracerebroventricular injection .. 112

Intrathecal administration.. 113

Implants for delivery of neurotrophic factors .. 113

Use of neurotrophic factor mimics.. 113

Use of microspheres for delivery of neurotrophic factors 115

Use of nanotechnology for delivery of neurotrophic factors 115

Use of microorganisms for therapeutic entry into the brain..................... 116

Bacteriophages as CNS therapeutics .. 116

Intracellular drug delivery in the brain .. 116

Local factors in the brain affecting drug action 117

Methods for testing drug delivery to the CNS.. 117

Animal models for testing drug delivery .. 117

Screening for drug-P-gp interaction at BBB .. 117
<table>
<thead>
<tr>
<th>Targeted drug delivery for neurological disorders</th>
<th>142</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkinson's disease</td>
<td>142</td>
</tr>
<tr>
<td>Drug delivery systems for Parkinson's disease</td>
<td>144</td>
</tr>
<tr>
<td>Methods of delivery of levodopa in PD</td>
<td>145</td>
</tr>
<tr>
<td>Duodenal levodopa infusion</td>
<td>145</td>
</tr>
<tr>
<td>Sublingual apomorphine</td>
<td>146</td>
</tr>
<tr>
<td>Transdermal drug delivery for PD</td>
<td>146</td>
</tr>
<tr>
<td>Transdermal dopamine agonists for PD</td>
<td>146</td>
</tr>
<tr>
<td>Transdermal administration of other drugs for PD</td>
<td>148</td>
</tr>
<tr>
<td>Intracerebral administration of GDNF</td>
<td>148</td>
</tr>
<tr>
<td>Cell therapy for PD</td>
<td>148</td>
</tr>
<tr>
<td>Human dopaminergic neurons for PD</td>
<td>149</td>
</tr>
<tr>
<td>Graft survival-enhancing drugs</td>
<td>150</td>
</tr>
<tr>
<td>Xenografting porcine fetal neurons</td>
<td>150</td>
</tr>
<tr>
<td>Encapsulated cells for PD</td>
<td>151</td>
</tr>
<tr>
<td>Stem cells for PD</td>
<td>151</td>
</tr>
<tr>
<td>Engineered stem cells for drug delivery to the brain in PD</td>
<td>152</td>
</tr>
<tr>
<td>Human retinal pigment epithelium cells for PD</td>
<td>153</td>
</tr>
<tr>
<td>Delivery of cells for PD</td>
<td>153</td>
</tr>
<tr>
<td>Gene therapy for Parkinson disease</td>
<td>154</td>
</tr>
<tr>
<td>Rationale</td>
<td>154</td>
</tr>
<tr>
<td>Techniques of gene therapy for PD</td>
<td>155</td>
</tr>
<tr>
<td>Prospects of gene therapy for PD</td>
<td>158</td>
</tr>
<tr>
<td>Companies developing gene therapy for PD</td>
<td>159</td>
</tr>
<tr>
<td>RNAi therapy of Parkinson's disease</td>
<td>159</td>
</tr>
<tr>
<td>Alzheimer disease</td>
<td>160</td>
</tr>
<tr>
<td>Drug delivery for Alzheimer disease</td>
<td>160</td>
</tr>
<tr>
<td>Blood-brain partitioning of an AMPA receptor modulator</td>
<td>161</td>
</tr>
<tr>
<td>Clearing amyloid through the BBB</td>
<td>162</td>
</tr>
<tr>
<td>Delivery of the passive antibody directly to the brain</td>
<td>162</td>
</tr>
<tr>
<td>Delivery of thyrotropin-releasing hormone analogs by molecular packaging</td>
<td>162</td>
</tr>
<tr>
<td>Nanoparticle-based drug delivery for Alzheimer's disease</td>
<td>162</td>
</tr>
<tr>
<td>Perispinal etanercept</td>
<td>163</td>
</tr>
<tr>
<td>Slow release implant of an AChE inhibitor</td>
<td>164</td>
</tr>
<tr>
<td>Intranasal insulin in Alzheimer disease</td>
<td>164</td>
</tr>
<tr>
<td>Transdermal drug delivery in Alzheimer's disease</td>
<td>164</td>
</tr>
<tr>
<td>Trojan-horse approach to prevent build-up of Aβ aggregates</td>
<td>165</td>
</tr>
<tr>
<td>Cell and gene therapy for Alzheimer disease</td>
<td>165</td>
</tr>
<tr>
<td>NGF gene therapy</td>
<td>165</td>
</tr>
<tr>
<td>Neprilysin gene therapy</td>
<td>166</td>
</tr>
<tr>
<td>RNAi therapy of Alzheimer's disease</td>
<td>167</td>
</tr>
<tr>
<td>Huntington's disease</td>
<td>167</td>
</tr>
<tr>
<td>Treatment of HD</td>
<td>167</td>
</tr>
<tr>
<td>Gene therapy of HD</td>
<td>168</td>
</tr>
<tr>
<td>Encapsulated genetically engineered cellular implants</td>
<td>168</td>
</tr>
<tr>
<td>Viral vector mediated administration of neurotrophic factors</td>
<td>168</td>
</tr>
<tr>
<td>RNAi therapeutics for the treatment of HD</td>
<td>168</td>
</tr>
<tr>
<td>Amyotrophic lateral sclerosis</td>
<td>169</td>
</tr>
<tr>
<td>Treatment of ALS</td>
<td>169</td>
</tr>
<tr>
<td>Drug delivery in ALS</td>
<td>169</td>
</tr>
<tr>
<td>Delivery of stem cell therapy for ALS</td>
<td>170</td>
</tr>
<tr>
<td>Gene and antisense therapy of ALS</td>
<td>171</td>
</tr>
<tr>
<td>Neurotrophic factor gene therapies of ALS</td>
<td>171</td>
</tr>
<tr>
<td>Antisense therapy of ALS</td>
<td>173</td>
</tr>
<tr>
<td>RNAi therapy of amyotrophic lateral sclerosis</td>
<td>173</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>173</td>
</tr>
<tr>
<td>Treatment of stroke</td>
<td>174</td>
</tr>
<tr>
<td>Drug delivery in stroke</td>
<td>174</td>
</tr>
<tr>
<td>Intracerebral administration of tissue plasminogen activator in stroke</td>
<td>175</td>
</tr>
<tr>
<td>Drug delivery for prevention of restenosis of carotid arteries</td>
<td>176</td>
</tr>
<tr>
<td>In-stent restenosis</td>
<td>176</td>
</tr>
<tr>
<td>Targeted local anti-restenotic drug delivery</td>
<td>177</td>
</tr>
<tr>
<td>Catheter-based drug delivery for restenosis</td>
<td>177</td>
</tr>
<tr>
<td>Stents for prevention of restenosis</td>
<td>178</td>
</tr>
<tr>
<td>Drug-eluting stents</td>
<td>178</td>
</tr>
<tr>
<td>Antisense approach to prevent restenosis</td>
<td>179</td>
</tr>
<tr>
<td>Drug-eluting stents for the treatment of intracranial atherosclerosis</td>
<td>179</td>
</tr>
<tr>
<td>Tissues transplants for stroke</td>
<td>180</td>
</tr>
<tr>
<td>Transplant of encapsulated tissue secreting neurotrophic factors</td>
<td>180</td>
</tr>
<tr>
<td>Methods for delivery of neurotrophic factors in stroke</td>
<td>180</td>
</tr>
<tr>
<td>Cell therapy for stroke</td>
<td>180</td>
</tr>
</tbody>
</table>
Drug delivery for migraine .. 181
Immortalized cell grafts for stroke .. 181
Intravenous infusion of marrow stromal cells 182
Intravenous infusion of umbilical cord blood stem cells 182
Future of cell therapy for stroke ... 182
Gene therapy of cerebrovascular diseases 182
Gene transfer to cerebral blood vessels .. 183
NOS gene therapy for restenosis .. 184
Gene therapy for cerebral ischemia ... 184
Gene therapy of strokes with a genetic component 186
Drug delivery to intracranial aneurysms 186
Drug delivery for vasospasm following subarachnoid hemorrhage ... 186
Intrathecal tissue plasminogen activator 187
Gene therapy for vasospasm ... 188

Drug delivery in multiple sclerosis ... 189
An electronic device for self injection of interferon beta-1a 189
Oral therapies for MS ... 189
Drug delivery for MS across the BBB ... 190
Delivery of methylprednisolone across the BBB 190
Monoclonal antibodies for MS and the BBB 190
Antisense and RNAI approaches to MS 190
Cell therapy for multiple sclerosis ... 191
Hematopoietic stem cell transplantation for multiple sclerosis 191
Embryonic stem cells and neural precursor cells for MS 192
Gene therapy for multiple sclerosis .. 192

Drug delivery in epilepsy .. 192
Routes of administration of antiepileptic drugs 193
Controlled-release preparations of carbamazepine 193
Intravenous carbamazepine ... 193
Various routes of administration of benzodiazepines 194
Methods of delivery of novel antiepileptic therapies 194
Regulated activation of prodrugs ... 194
Use of neuronal membrane transporter 194
Delivery of the antiepileptic conopeptides to the brain 195
Nasal administration of AEDs ... 195
Intracerebral administration of AEDs .. 195
The role of drug delivery in status epilepticus 196
Cell therapy of epilepsy .. 197
Gene therapy for epilepsy ... 197
Gene therapy for neuroprotection in epilepsy 198
Concluding remarks on drug delivery in epilepsy 198

Drug delivery for pain .. 199
Intranasal delivery of analgesics ... 200
Intranasal administration of morphine 200
Intranasal morphine derivatives ... 201
Intranasal fentanyl ... 201
Intranasal buprenorphine ... 202
Intranasal ketamine ... 202
Intranasal ketorolac ... 202
Delivery of analgesics by inhalation ... 203
Delivery of analgesics to peripheral nerves 203
Spinal delivery of analgesics .. 204
Epidural dexamethasone .. 204
Epidural morphine ... 206
Relief of pain by intrathecal ziconotide 206
Intrathecal neostigmine .. 207
Intrathecal prostaglandin antagonists 207
Intrathecal fadolimidine ... 207
Intrathecal siRNA for relief of neuropathic pain 208
Concluding remarks on intrathecal delivery of analgesic agents 208
Intracerebroventricular drug delivery for pain 208
Delivery of analgesics to the CNS across the BBB 208

Drug delivery for migraine ... 209
Management of migraine .. 209
Novel drug delivery methods for migraine 210
Nasal formulations for migraine ... 211
Sublingual spray for migraine ... 212
Needle-free drug delivery for migraine 212

Drug delivery for traumatic brain injury 212
Cell therapy of traumatic brain injury 212
Gene therapy for traumatic brain injury 213
6. Drug delivery for brain tumors ... 213
 Administration of neurotrophic factors for spinal cord injury 213
 Cell therapy for spinal cord injury 214
 Transplantation of giall cells for SCI 215
 Fetal neural grafts for SCI ... 215
 Embryonic stem cells for SCI ... 215
 Schwann cell transplants for SCI 215
 Olfactory giall cells for SCI .. 216
 Marrow stromal cells for SCI ... 216
 Intravenous injection of stem cells for spinal cord repair 216
 Combinatorial approach for regeneration in SCI 217
 Cell therapy of syringomyelia .. 217
 Gene therapy of spinal cord injury 217

Drug delivery in CNS infections ... 217
 Drug delivery in neuroAIDS ... 218
 Drug delivery for miscellaneous neurological disorders 218
 Drug delivery for CNS involvement in Hunter syndrome 218
 Antisense therapy for spinal muscular atrophy 219
 Antisense gene splicing for SMA 219
 Intrathecal antisense delivery .. 219
 Genetically modified stem cells for metachromatic leukodystrophy .. 219
 Relief of spasticity by intrathecal baclofen 220

Drug delivery for retinal disorders 220
 Age-related macular degeneration 221
 Squalamine ... 221
 Combretastatin A4P for myopic macular degeneration 221
 Gene therapy for AMD ... 221
 Anti-VEGF approach to AMD .. 222
 Delivery of pegaptanib for treatment of AMD 222
 Stem cell therapy for retinitis pigmentosa 223
 Proliferative retinopathies .. 223

Drug delivery for inner ear disorders 223
 Delivery of stem cells for hearing loss 224
 Auditory hair cell replacement by gene therapy 224
 Future prospects of drug delivery to the inner ear 225

Drug delivery in psychiatric disorders 225
 Delivery of antidepressants ... 225
 Transdermal delivery of antidepressants 226
 Nasal delivery of antidepressants 226
 Delivery methods and formulations of antipsychotics 228
 Transdermal haloperidol ... 229
 Transdermal risperidone for treatment of schizophrenia 230
 Transdermal blonanserin for treatment of schizophrenia 230
 Transnasal oxytocin for schizophrenia 230
 Transdermal lithium for bipolar disorder 230

6. Drug delivery for brain tumors ... 232
 Introduction .. 232
 Methods for evaluation of anticancer drug penetration into brain tumor .. 232
 Innovative methods of drug delivery for glioblastoma multiforme 232

Delivery of anticanncer drugs across the blood-brain barrier 233
 Anticancer agents with increased penetration of BBB 233
 BBB disruption .. 234
 Nanoparticle-based targeted delivery of chemotherapy across the BBB .. 235
 Tyrosine kinase inhibitor increases topotecan penetration into CNS 236

Bypassing the BBB by alternative methods of drug delivery 237
 Intranasal perillyl alcohol ... 237
 Intraarterial chemotherapy .. 237

Enhancing tumor permeability to chemotherapy 238
 PDE5 inhibitors for increasing BTB permeability 238

Local delivery of therapeutic agents into the brain 238
 Biodegradable microspheres containing 5-FU 238
 Carmustine biodegradable polymer implants 239
 Fibrin glue implants containing anticancer drugs 240
 Interstitial delivery of dexamethasone for reduction of peritumor edema .. 240
 Magnetically controlled microspheres 240

Convection-enhanced delivery .. 240
 CED for receptor-directed cytotoxin therapy 240
 CED of topotecan .. 241
 CED of a modified diphtheria toxin conjugated to transferrin 241
7. Impact of improved drug delivery on CNS drug markets

Introduction

Markets for Drug Delivery in CNS Disorders

Introduction

Methods of calculation of CNS drug delivery markets

Markets for CNS drug delivery technologies

Drug delivery share in selected CNS markets

Geographical distribution of CNS drug delivery markets

Impact of improved drug delivery on CNS drug markets

Neurodegenerative disorders

Alzheimer disease

Parkinson disease

Huntington disease

Amyotrophic lateral sclerosis

Epilepsy

Migraine and other headaches

Stroke

Central nervous system trauma

Multiple sclerosis

Brain tumors

Limitations of the current drug delivery technologies for CNS

Future strategies for expanding CNS drug delivery markets

Education of neurologists

Demonstration of the advantages of the newer methods of delivery

Rescue of old products by novel drug delivery methods

Facilitation of the approval process of new drugs

8. Companies

Introduction
9. References ... 358

Tables
Table 1-1: Landmarks in the development of drug delivery to the CNS ... 18
Table 2-1: Proteins expressed at the neurovascular unit ... 31
Table 2-2: Transporters that control penetration of molecules across the BBB 36
Table 2-3: Enzymes that control the penetration of molecules across the BBB 39
Table 2-4: Factors that increase the permeability of the BBB ... 44
Table 2-5: Diseases with associated disturbances of BBB ... 45
Table 3-1: Various methods of drug delivery to the central nervous system 62
Table 3-2: Drugs available for intrathecal administration .. 71
Table 3-3: Investigational drugs administered by intrathecal route .. 72
Table 3-4: Strategies for drug delivery to the CNS across the BBB ... 77
Table 3-5: Specific inhibitors of P-glycoprotein in clinical development .. 85
Table 3-6: Molecules attached to Trojan horses injected intravenously for CNS effect 90
Table 3-7: Examples of controlled and sustained release drug delivery for CNS disorders 103
Table 3-8: Novel methods of delivery of drugs for CNS disorders .. 104
Table 3-9: Indications for the clinical applications of NTFS in neurologic disorders 109
Table 3-10: Methods for delivery of neurotrophic factors to the CNS .. 109
Table 4-1: Methods for delivering cell therapies in CNS disorders .. 121
Table 4-2: Classification of methods of gene therapy .. 125
Table 4-3: Methods of gene transfer as applied to neurologic disorders ... 126
Table 4-4: Potential indications for gene therapy of neurologic disorders 131
Table 4-5: Companies developing cell/gene therapies for CNS disorders ... 133
Table 4-6: Methods of antisense delivery as applied to the CNS .. 134
Table 5-1: Strategies for the treatment of Parkinson’s disease .. 142
Table 5-2: Drug delivery systems for Parkinson's disease ... 144
Table 5-3: Types of cell used for investigative treatment of Parkinson’s disease 149
Table 5-4: Status of cell therapies in development for Parkinson’s disease 149
Table 5-5: Gene therapy techniques applicable to Parkinson disease ... 155
Table 5-6: Companies developing gene therapy for Parkinson's disease .. 159
Table 5-7: Classification of pharmacotherapy for Alzheimer disease ... 160
Table 5-8: Novel drug delivery methods for Alzheimer disease therapies ... 161
Table 5-9: Classification of neuroprotective agents for amyotrophic lateral sclerosis 169
Table 5-10: Methods of delivery of therapies in development for ALS .. 170
Table 5-11: Classification of treatments for stroke .. 174
Table 5-12: Treatments of stroke involving innovative drug delivery methods 175
Table 5-13: Drug delivery for prevention of carotid artery restenosis after angioplasty 177
Table 5-14: Gene transfer in animal models of carotid artery restenosis ... 183
Table 5-15: Neuroprotective gene transfer strategies in models of cerebral ischemia 185
Table 5-16: Gene Therapy for reducing cerebral infarction in animal stroke models 185
Table 5-17: Pharmacological agents for treatment of cerebral vasospasm 187
Table 5-18: Gene therapy strategies for vasospasm .. 188
Table 5-19: A classification of drug delivery methods used in management of pain 199
Table 5-20: Spinal administration of drugs for pain ... 204
Table 5-21: Investigational drugs for pain administered by intrathecal route 205
Table 5-22: Current management of migraine ... 209
Table 5-23: Novel drug delivery methods for migraine ... 210
Table 6-1: Innovative methods of drug delivery for glioblastoma multiforme 232
Table 6-2: Strategies for gene therapy of malignant brain tumors ... 249
Table 7-1: Share of drug delivery technologies in selected CNS markets: 2016-2026 259
Table 7-2: CNS market share of drug delivery technologies 2016-2026 .. 259
Table 7-3: Value of CNS drug delivery in the major world markets from 2016-2026 260
Table 7-4: Limitations of the current drug delivery technologies for CNS 264
Table 8-1: Alkermes pipeline ... 275
Table 8-2: Collaborations of companies in CNS drug delivery ... 354
Figures

Figure 1-1: Interaction of neurotransmitters with receptors ... 22
Figure 2-1: The neurovascular unit .. 30
Figure 2-2: Various forms of passage of substances across the blood brain barrier 35
Figure 2-3: Role of BBB models for drug delivery in preclinical CNS drug development 57
Figure 3-1: Routes of drug delivery to the brain ... 63
Figure 3-2: Penetration of CSF into spinal cord .. 70
Figure 3-3: Disposition of opioids after intrathecal administration .. 73
Figure 3-4: Use of receptor-mediated transcytosis to cross the BBB ... 92
Figure 3-5: Nanotechnology-based strategies for delivery of BDNF to the CNS 116
Figure 5-1: Oral versus transdermal administration of a drug in Parkinson's disease 147
Figure 5-2: Effect of tyrosine hydroxylase gene delivery on dopamine levels 156
Figure 6-1: A concept of targeted drug delivery to GBM across the BBB ... 235
Figure 7-1: Unmet needs in the CNS drug delivery technologies ... 265